引言
随着人们对生活质量要求的提高和全球反恐的大势所需,以及数字化技术本身的不断进步,依托指纹识别、虹膜识别、人脸识别等技术的生物识别方案和视频监控方案等正逐步成为提高个人、家庭、企业和社会安全性的重要手段。生物识别方案主要包括四个步骤:图像采集、图像预处理,特征取样,匹配分析;而视频监控方案则主要包括图像采集、图像预处理、图像处理与传输、图像显示及图像管理等。不难看出,无论是生物识别还是视频监控,图像预处理都是必需的。事实上,图像预处理算法的灵活度、复杂度、对图像处理芯片资源的占用度,以及处理时间的长度将直接对整个系统运行产生举足轻重的影响。因此,图像预处理对于整个安防方案来说都是一项艰巨而又关键的任务,直接决定了后续图像处理与分析的准确性和便捷性。
图像预处理分析
根据目的的不同,图像预处理可分为对采集图像进行清晰化处理,对图像进行识别前的预处理,以及对图像进行压缩前的预处理等。其中,对采集图像进行清晰化处理主要包括对CMOS或CCD图像传感器感光单元的不一致进行后续纠正,对实际环境与传感器采集的图像进行差异补偿(如背光),以及对采集到的原始图像进行去噪处理等。虽然这种预处理算法本身的难度不大,但随着实时性需求的普及,尤其是在像素较大时,这种算法还是对DSP的处理能力提出了很高的要求。
而对图像进行识别前的预处理则目的性很强,可能需要破坏原来的像素和分布,以便后续进行特征提取。这种预处理算法的难度视识别场合的不同而不同。要综合后面的识别算法部分,选择适当的DSP。图像压缩前的预处理主要是指将YUV422变为YUV420、将RGB变为YUV等。这类处理往往有实时性要求,如果采用软件实现,会对处理性能有较高的要求;如果采用硬件实现,则虽然在处理性能上有保证,但硬件成本会有所上升。
同时,根据应用不同,图像预处理又可分为生物识别应用中的图像预处理和视频监控应用中的图像预处理。对于生物识别应用,以指纹识别为例,其预处理主要包括指纹图像增强、指纹图像二值化、指纹图像细化、指纹图像细化后处理。而视频监控应用中的图像预处理主要是指对图像传感器输出的连续图像进行分析,获取足够的信息,并通过自动白平衡、伽马(Gamma)校正、自动聚焦、自动曝光、背光补偿等来提高图像的实际效果。
图像预处理的挑战
无论是生物识别还是视频监控,其图像预处理正面临以下挑战:其一,用户对图像质量的要求越来越高,图像预处理的算法越来越复杂,从而对图像预处理主芯片处理能力及存储空间提出了更加苛刻的要求;其二,用户对图像的实时性处理和传输要求越来越高,一方面要求图像预处理算法尽量优化、精简,另一方面也对图像预处理主芯片的内核处理能力、内部总线架构、数据传输能力、外围接口,以及硬件整体架构和指令集对预处理算法的支持提出了更高要求;其三,不同于图像和视频编解码算法具有业界统一的算法标准和清晰的演进路线图,图像预处理算法不仅没有统一的标准和清晰的发展方向,甚至在很大程度上,方案提供商正是通过这些“秘密”的个性化算法来作为市场竞争的法宝。此外,随着应用领域的不同、需求的提高和技术本身的演进,原有算法会不断升级,新的算法会不断涌现,这些都要求图像预处理芯片具有更高的灵活性和适应能力。其四,对于方案提供商来说,不仅其体现竞争力的核心算法需要防止被非法读取或拷贝,而且无论是生物识别还是视频监控,其图像数据往往都会涉及隐私,因此也需要提供可以信任的安全保证。以上两方面,都要求图像处理芯片必须提供一个可靠、完全的处理平台。