2.检测电路
现在我们进入对控制电路的讨论,包括:
●稳定的输出电压●电流限制●电池(温度)监控●电池充电完成指示前三项都涉及输出电压。而通过减低输出电压,就可以减小输出电流。因为在充电时,如果电池变热,就必须通过减低输出电压来减小输出电流。
请看电路的拓扑结构,图中的3个放大器(IC1B、IC1C和IC1D)共同来控制一个输出信号。在逻辑上,使用一个或门电路可以实现这个逻辑功能。电路中可以看到3个放大器的输出端简单地连接在一起。在一般情况下若一个放大器试图增加电压,而另一个放大器要减小输出电压时,自然会引起问题。
而通过在放大器后面放置一个二极管或三极管,就可以解决这个问题。在本电路图中使用的是一种更为巧妙的办法:即使用的是带有集电极开路输出端的线性放大器电路。因为这就意味着,各放大器只能减少,而不能增加共享输出端上的电压。而R8用于提供上拉电压,并为T2提供基极电流,进而控制T1的导通和截止。电池的正极接到电源的正极,从而形成这样一个系统。其中每个参数(电压、电流和温度)各自有一个放大器,可以控制(减小)输出端的电压。
3.电流稳定功能
凭经验,可以假定锂电池的充电电流约为其额定电流的O.7~1倍。本充电器的标准充电电流为0.65A。这使得它可以有效地为容量为0.65Ah(安培小时)或更大一些的电池充电。通常对于完全放电后的电池来说,充电电流会大于上述的0.65A。如果在输出电路上串联一个小电阻,就很容易通过测量其两端的电压来判断输出电流。电路中,这一功能由R17和R18来实现。这两个电阻用于测量电流的大小和耗散功率。
通过电阻的电流产生一个电压,IC1D将此电压与一个由参考电压经分压器R6和R5所取得的电压相比较。如果由电流产生的电压高于所对照的电压,则IC1D通过减少共享的输出电压来产生控制。就会减小输出的充电电压,进而减小充电电流。使之稳定在所需要的水平。
当电池充满电时,由IC1C提供一个可以防止电压升高到4.2V以上的控制功能。它将由R15和R16分压的电池电压与由R4和R7分压的参考电压相比较,如果需要时,也通过减少共享的输出电压来加以控制。
由IC侣和R14、R3、R1所组成的温度监控电路的逻辑功能是类似的。热敏元件(NTC电阻)装在电池盒中。其阻值会随着电池温度的升高而降低。热敏电阻与R1组成一个分压器。IC侣将由此节点取得的电压与分压器R14和R3从参考电压得来的电压比较,来判断温度。如果电池温度过高,就通过降压阻止充电过程。换句话说:这里的温度保护功能并不是故障保护器。当此电路接触不良或开路时,充电过程会照常进行。
如果你曾经制作过带有两个后置晶体管(它们也有增益)的放大器电路,那么你就会明白这里会遇到的问题。这样的电路必须防止出现振荡。本电路中使用一个大容量的电容C1来控制电路的速度,从而解决了这个问题。另一个电容C2接在输出端与分压电阻R15/R16的电压相结合,在无负载时保持电路的稳定。分压器提供一个小的负载。
4.充电指示器
我们前面曾经讨论过一些关于指示器的问题。它是由以IC1A为核心的电路组成。这部分电路并不是必不可少的,但也是很重要的。因为作为用户,自然希望了解充电过程的进展情况。这个指示电路的优点就是对于充电电流的反映灵敏。这使你能够确认充电过程实际上是否在进行。以免出现诸如忘记插上电源,或电池没有接好等类简单错误。
这里参考电压被R12/R19再次分压,产生约14mV的电压。如果由于充电电流下降而引起的通过R17/R18的电压下降,并且低于此值(例如:没接电池或电池已经充满电了)。则IC1中内置的集电极开路晶体管将会截止。红色的LED管D1此时会断开。而由于绿色的LED管接在3.3V上,并且通过220电阻接地,所以会点亮。
相反,当有正常的充电电流流过时。IC1d将会导通,使得输出电压下降。这种情况下,红色LED管将会发光。而T3导通将会短接绿色LED管的输出,使之不亮。这样使用双色LED。就可以完美而清楚地指示充电进行情况。
你现在可以认识到选择14mV作为IC1 A的参考电压的意义,因为最大充电电流650mV会在R17/R18上产生153mV的电压降。而14m V正是这个值的1/11。一般当充电电流下降到最大值的1/11,就可以认为电池充电过程已经完成了。
你还可以另外加上一级电路,因为电池如果被放电到2.9V以下,最好限制充电电流在电池容量的1/10之下。这一点很容易作到,只需要用另外一个放大器接到与R5并联的一个小电阻上,从而减小限制电流到14mV的参考电压的分压。样机中没有这样做的原因是,这需要另加一片IC。