对于中等信息量的显示器,必须采用多路寻址方式,要求饱和电压对阈值电压比值高,以便获得更大的信息量和更高的对比度。为此,弹性常数K33/K11之比值,介电各向异性(Δε)对垂直介电常数(ε⊥)的比值,以及粘度等混合液晶的物理参数对显示器光电特性的影响要认真给予考虑;而且,某些参数的影响是对立的。例如,增大显示对比度需要大的K33/K11,而快的响应速度则要降低K33/K11,这只能通过调整单体液晶的组成和含量寻求最佳值。
但是,即使对于最简单的显示器,最佳混配也很难达到,因为许多物理性质需要同时调整以满足器件的要求的目标值,而调整一个参数往往影响另一个参数。此外,在某些情况下,性质变化与浓度呈线性,而在另一些情况却不是。
目前,液晶显示器生产中使用的所有液晶材料实际上都是液晶混合物。例如Roche公司的Ro-520液晶是由七种单体液晶混合而成,而BDH公司早期生产的E7液晶,实际上是由四种单体液晶混合而成,成分如表5。四种单体液晶熔点均大于20℃,但配成混合液晶后,其工作范围为-10—60℃,即熔点为-10℃,比任何一个单体液晶的熔点都低。
(1)性质 液晶材料有许多技术参数,包括电光参数与物性参数,主要有:介电各向异性Δε,双折射Δn,粘度η,弹性常数K,相变温度(Tm、Tc),电阻率р等。
以STN-LCD器件要求为例,为了获得大显示容量及高对比度,并且响应时间短,工作温度范围宽,还要求Δn值和阈值电压在某一范围内是可调节的。STN液晶材料的技术指标通常所取的范围如下:
温度 ℃ ﹤-40 ~﹥80
△n 0.1100~0.1600
阈值电压(Vth) V 1.5~2.0
粘度η(20℃) mPa.s 20~35
K33/K11 1.5~2.2
K22/K11 0.5~0.6
Δε/ε⊥ 1.8~3.0
a.相变温度 二元混合物的熔点低于它的任何一个组成化合物。Schroder Van Laar方程关联了混合物熔点(T)与化合物A的摩尔分数(XA):
式中,Ha和Ta分别为纯化合物的熔融潜热和熔点,R是气体常数。对于N个组分的混合物,有N个这样的方程。即:
从方式程式可以求出混合体系的共熔组成和共熔点,此方法可偶尔用来预测低共熔混合物的摩尔组分,但是理想的情况很少存在,只能作为一种指导;现在已有其他经验方法。一般来说,为了得到低共熔点混合物,需要经验与试验。混合物的清亮点(Tc)预测更为可*,因为它倾向于混合物组分的线性方程。
式中,Xi是组分的摩尔组成,Tci是组分的清亮点,当极性类似的化合物混合时,这种关系保持最好,而当极性组分与非极性组合分混合时,经常发现与理想行为有大的负偏差。
相图(图19)表明出现低共熔点时,熔点降低,但液晶相态温度范围上升。图中C表示晶体,N表示向列相液晶,I表示各向同性的液体。
图19 组成,%
A
B
A,B组分混合物相图
b.介电常数 介电各向异性(Δε)的大小直接决定液晶与电场相互作用的强度。因此,它对阈值电压有很大影响。带强极性端基(例如,CN)的化合物通常呈现大的Δε,有低的阈值电压。然而缔合对的问题必须考虑。当缔合对减少或消除时(如添加非极性化合物),介电各向异性可以增加。在某种情况下,可以增加50%的非极性材料,而Δε不显著减少。然而,Δε低与高的化合物,可能在混合物中产生近晶相,这种现象难以预测。虽然在混合物要求的操作范围内不希望有近晶相,但是在低温下存在近晶相可以产生有利的弹性常数[84]。
在大多数显示器中,Δε对垂直介电常数ε⊥之比非常重要。通常不希望有小Δε/ε⊥的比值。但是,Δε大(对低的阈值电压而言)和ε⊥大的材料很难找到,因此,通常采用添加负性介电各向异性材料来增加混合物的ε⊥。对于给定的阈值电压,难以使该比值有大变化。
c.弹性常数 扭曲向列型(TN)显示器,要求小的K33/K11比值[83]。展曲(K11)和扭曲(K22)弹性常数,在混合物中的变化几乎是线性的,但是弯曲弹性常数(K33)呈现负性偏差,这样,K33 /K11也就有偏离,而得到比期望值更低的值。液晶混合过程应避免出现近晶相,但是,接近近晶相也趋于降低K33 /K11,这样,显示低温近晶相的极性和非极性分子的混合物具有有利的弹性常数。
对于超扭曲向列型(STN)显示器,K33 /K11比值应该大,因此,应选择非芳烃体系和短链烷烃。K33 /K11比值大,液晶材料的电光线陡峭,多路驱动能力增加,对比度加大;但是,K33 /K11比值大,响应时间也加大,所以这个比值仅要求适中。
d.双折射 对于简单的TN显示器,液晶的双折射Δn不很重要。通常要求d·Δn=1.065(d是盒厚)。对于要求d·Δn=0.476的其他显示器,要求混合物具有更低的Δn。例如STN显示器就非常强烈地依赖于d·Δn值,因为该值对显示器的光学性质影响极大。
在类似的液晶混合物中,双折射通常是与组分浓度成线性关系。
e.粘度 现在通常采用体粘度,因为它与显示器的响应时间(Td)相关,而且容易测量:
Td=kηd2
其中,η是粘度,常用容易测量的体粘度,d是盒厚,k与弹性常数有关。在大多数情况下,要求低粘度。粘度与温度关系密切,温度每改变20℃,粘度要变化3-5倍。
用各组分(Ci)粘度对数的总和可以估计向列相液晶混合物的粘度η:
lgη=ΣCilgηi
2)配制
a.组成及对单体液晶的要求 混合液晶的配制及组成完全根据液晶显示器件的要求确定,一般来说,TN器件所用的材料要求比较低,可用, 及 等液晶单体来配制。当然,宽温度范围、低阈值电压的TN显示材料要增加,等单体。
STN-LCD要求的液晶材料性能要高一些,通常所选择的单体属于下列各类:
(a)苯基环已烷类 这类化合物一般具有较低粘度,如分子结构中具有三个以上的环,则清亮点较高,在调制中起着提高清亮点温度的作用。
(b)联苯、嘧啶和炔类 由于它们具有较高的折射率,可在混合体系中调制所需的Δn值。
(c)含有非芳香环和短链的烷基或烷氧基的液晶化合物 它们通常具有较大的K33/K11值。
(d)乙烷类 该类化合物具有较低的粘度。
目前超扭曲材料大多选用苯基环己烷类和乙烷类液晶作为主体成分。
有源矩阵显示(AM-LCD)用液晶材料要求更高,除了超低粘度外,还要求高电阻率、高电荷保持率和适当的介电各向异性。目前合成的许多含氟液晶材料基本上可以满足它的要求。
b.混合方法 一般来说,首先选择低熔点和适当的向列相范围的液晶作为基本混合物,其中某些可以是极性的,另一些是非极性的,这就允许改变Δε;同时注意避免产生近晶相。这些组分的选择应该由要求Δn控制。如果要求低阈值,则应当往基本混合物中添加高Δε值的化合物。这样,Δε/ε⊥比值的调节就更加困难,但是也可以加能够改变它们的的材料。然后,通常利用高清亮点的添加剂来提高混合物的清亮点。这样经过几次反复就可以得到混合物的配方。其中每一组分都对混合物的最终性质有所贡献。
混合物配方还可以利用加法规则,根据器件性能与材料参数的关系,采用线性归纳法选其最佳化者加以确定。
在混配液晶时,由于液晶的粘度比较大(有的在室温时为固态),必须将液晶加热至清亮点,用机械搅拌、磁力搅拌或超声波等方法进行充分均匀混合。搅拌时,应在防尘、防潮或在干燥的保护气氛下进行。