1 监控系统硬件设计
1.1 监控系统硬件结构
为了简化监控模块的电路,采用总线式设计方案,即将大量的数据处理放在系统级监控中,而模块级监控负责数据采集(包括输出电压、电流),以及提供各种保护功能并且进行状态监控(包括过热、过流、过压、电网故障等)。由上位机通过通信总线对各个电源模块进行管理,监控系统框图如图1所示。
1.2 监控模块硬件功能设计
单个监控模块所要实现的功能包括监测功能、控制功能和通信功能.监测是指动态采集模块输出电流、判断模块工作状态,并将数据和有关状态传输给系统上位机;控制是指接受上位机发出的调压信号进行模块输出电压的调节,也可以通过面板上电位器进行输出电压调节,同时实现故障保护;通信是指模块配备RS485接口与系统上位机通信。
监控模块的功能框图如图2所示。电源主功率电路采用移相全桥,可以实现软开关,提高效率,为了扩展软开关的负载范围,增加了辅助网络,具体的电路和工作方式本文不做讨论。虚线框内所示就是整个监控模块,模块的输入量有电网输入电压、散热片温度、电源输出电压和输出电流;模块的输出量有调压信号、电源关闭信号和送给上位机的电源运行状态信号。
微处理器是监控的核心器件,奉系统采用PHILIPS公司的P87LPC768单片机,其内部集成了PWM口、UART、WATCHDOG,该微处理器体积小(20脚)、功耗低、功能强大。PWM口可以用来进行D/A转换,由于对输出电压的调节不是很快的调速系统,因此只需要普通光耦隔离,跟随阻容滤波器进行滤波,得到控制信号,对输出电压进行调节,这样,充分利用了单片机内部的资源,减少了容易受温度和电磁场干扰的外围元器件。
由于电源模块内部温度变化较大,普通的模拟信号隔离(如采用线性光耦隔离)受温度影响较大,因此先对输出电压和电流进行采样,得到数字信号,然后再通过光耦隔离送入单片机内处理。电流采样选用的是串行A/D转换器(如MAX1109),这样一方面节省了单片机有限的管脚资源,另一方面减小了模块体积。由于串行A/D转换器的数据读出和写入的频率可以比较低,因此可以采用普通光耦,降低成本。而转换时钟则可以采用A/D转换器内部的高频时钟,不会影响转换精度。
采样得到的输出电压和电流值,也可以通过串行通信传送到上位机,供上位机对整个系统进行监控管理,同时也供模块本身的液晶显示用。为了节约单片机的资源,可以采用串行传送的方案。通过一个串行/并行转换器(如74LS164)来实现这一功能。液晶可以采用模块,简化设计电路,提高可靠性。同时为了节省单片机资源,可以让液晶模块工作在4位数据方式。
监控模块的电压调节方式有两种:一是通过手动调节旋钮进行手动调节,二是修改软件里的设置进行调节(系统级监控中才涉及)。控制电源模块的输出电压主要是要控制PWM波形的占空比,第一种方式下必须设计出可以产生占空比可调的PWM波形的电路(如由555定时器组成的占空比可调的多谐振荡电路),第二种方式下,是利用PHILIPS的P87LPC768单片机的PWM口产生PWM波形,而占空比的改变是在软件中进行设置的。
监控模块与上位机进行通信时,由于是多级通信,必须要有地址来进行相互区分,对每个模块进行地址编码,模块的地址设定靠拨码开关来控制,设置好的地址通过并进串出移位串行寄存器读入单片机内进行处理。通信采用485协议。
采用上述设计方案设计出来监控模块体积小,成本较低,功能又比较完善。
2 监控系统软件设计
整个系统的软件采用模块化设计,由多个子程序构成,便于调试和扩展。为了提高采样数据的准确性,减小误差,在程序中采用了数字滤波技术。
主程序的流程图如图3所示,初始化后进入主循环,检测系统的状态,判断是否过压,电网是否故障,是否过温,是否过流,并且采样输出电流,转换成电压信号作为显示并且通过通信总线输送到上位机。由于模块的电压、电流显示只是起到监视作用,不作为测量,因此刷新的频率不需要很高,基本上不加重MCU的负担。
检测系统状态时,如果发生了故障,延时再判断是不是真的出现故障,一旦确认是出现了故障,关掉模块输出,同时用不同的LED指示灯来显示不同的故障。这其中,过温故障和电网故障是属于可恢复性故障,因此要求等待一定时间,当故障消失后,模块能够重新启动;而输出过压和过流故障是不可恢复性故障,则不应该再让模块重新启动。
上位机对下位机的控制主要通过通信总线,采用主从式多机通信方式,上位机首先处于方式二,发出地址帧,然后等待从机的回答信号,收到后转为方式三,再发出指令。被呼叫的从机收到主机的地址帧后,如果与自己的地址一致,就从方式二切换为方式三,把自己的地址作为数据发出,然后等待指令。
数据格式如下:
D8位为1表示发出的是地址帧,08位为0表示发出的是数据帧。模块地址编号从0到15,与模块放置次序一一对应。通信波特率为2400bps。
3 结语
本文介绍的监控系统,功能齐全,可靠性高,体积很小,而且抗干扰能力强,受温度影响小,成本低廉,能够应用在高功率密度电源模块中,有很大的实用价值,现已应用在通信电源产品中。