1 功率因素补偿(PFC)
工业控制应用中电力网经常需要与整流器相连。经典的整流器是由二极管或晶闸管组成的一个非线性电路,在电网中会产生大量的电流谐波。PFC的目的就是消除这些窄而陡的电网脉冲,这些陡的电流会引起频射干扰;更严重的是,它的有效值比所需的负载输出功率要大。这不仅会造成输入电机温升过高,还会使滤波电容的温升提高并降低其可靠性。
将PFC技术应用在boost变换器中。功率因素补偿电路的首要任务是,利用boost变换器将沿正弦半波曲线上升和下降的不同输入电压转换为稳定的、比输入正弦电压幅值稍高的直流输出电压。在整个正弦电压的半个周期里,导通时间由软件PWM控制,它检测到输出电压并利用误差放大器与内部基准电压进行比较,通过负反馈来设置导通时间,从而使输出电压保持定值不变。其第2个任务是,检测输入电网的电流并使它变为与输入电网电压同相位的正弦波。这也需要通过调整boost变换器的导通时间来实现。导通时间由负反馈环决定,将实际电网电流采样并与基准正弦波电流比较。这两个正弦波的差值是误差电压,由误差电压来调节导通时间使两个正弦波具有相同的幅值。最终控制boost变换器导通时间的电压是直流输出电压的误差电压和输入电网电流的误差电压的合成电压。这种合成由LPC2148内部的乘法器实现,其输出与输出电压的误差电压和输入电流的误差电压的乘积成正比。
2 VF控制系统的实现
2.1 VF控制的硬件实现
变频器是运用近代电力电子与控制技术的一种新兴产品,主要用在各种工业和民用的机电设备上。其特点是,通过改变供电频率来控制电机转速,进而达到提高机电设备自动化程度与节约能源的目的。VF控制电路结构简单、成本较低、机械特性硬度较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。
涉及的变频器电路由主回路、驱动控制电路、人机界面、PFC功率因素校正电路、保护电路、RS485通信接口电路和辅助电源电路等几部分组成。通过对各个模块的软硬件设计,实现一个结构简单、功耗低、成本低、动态性能良好的小功率变频器。用户可以通过人机界面来设置电机的启停、正反转以及转速,也可以通过外部端子的输入信号来控制。系统硬件框图如图1所示。
该系统含两个功率部分:带有PFC功能的BOOST电路和三相SPWM逆变桥电路。
第一部分是一个BOOST升压模块,电路中有电压和电流两个闭环回路,采用PID算法实现控制。一方面实现消耗电流对输入电压波形的跟踪,以及消耗电流与输入电压相位的同步;另一方面使逆变桥母线电压输出恒为DC 375 V。这个设计使市电供应在AC 85~265 V的范围时都可以得到功率因素补偿PF=1的效果。
第二部分由带自举驱动和保护功能的高低边半桥驱动器驱动MOS管组成的3个独立半桥。LPC2148处理器作为主控制器,输出3路双边沿调制的SPWM波形。该3路输出采用自举、电平移位方式,经功放后驱动半桥输出,减少对辅助电源的需求,结构简单;具备完善的瞬时过流保护电路和持续过流保护功能。在系统瞬时过载时,关闭部分驱动脉冲,长期过载可以使系统停止对外输出,待过载消失可以重新启动。逆变桥设计的最大调制比为85%,使母线电压375 V调制三相为220 V交流(375×0.85约大于220 V的峰值电压310 V)。