2.3 混合供电模式
前面所讨论的两种方法都采用提高负载突变时电流的跟随速度来获得良好的动态性能。而另一种思路就是在负载跳变时,提供一条支路来实现电容的快速充放电。这种供电拓扑成为混合供电拓扑,如图六所示。
其中,BUCK拓扑是主供电电路,而推挽线性电路为辅助电路。即混合供电电源采用线性电源与开关电源同时供电。其中线性电源由一个低功率放大器和电源输出模块构成,它的输出端直接连接到模块S(由电阻RL和电容C组成)。参考电压VRef加在比较器1的同相输入端,输出加到反向输入端。线性电源控制环比开关电源的具有宽的多的带宽。线性电源的输出电流iLi在Rs上的压降Vs作为开关电源误差性号。在负载Step-up发生时,线性电源提供必要的电流来保证电容上电压的稳定。而电流iLi的增加引起isw的增加,而isw的增加使iLi降低到0。当负载Step-down发生时,线性电源为电容提供一个电流泄放回路,以此来保持电容上电压的稳定[6]。
开关电源的主要特征是效率高,但是由于开关损耗的限制使得开关频率不能做的很高,所以带宽有限。还有开关电源电路依赖导通模式和外部参数(如输入电压,输出电流)的小号信增益模型,这就限制了开关电源用于电压、电流发生突变的场合,如给CPU供电。而线性电源具有很快的动态响应速度,在负载突变时能保证输出电压稳定,但是效率较低。混合电源利用了两种电源的优点,开关电源的高效率和线性电源的快速响应速度,这样就克服了开关电源响应速度慢和线性电源低效率的缺点。还有混合供电模式的控制环的具有很宽的带宽[6]。
图六 混合供电拓扑
3 总 结
以上提出的三种拓扑,它们从不同的角度出发,实现良好的动态性能,但他们的根本出发点都是希望减少动态过程中输出电容所承担的不平衡电荷。VRM设计需要综合考虑效率、动态性能、功率密度、体积、成本等因数。因此在设计快速动态性能的VRM时,不能把动态性能与其他方面割裂开来考虑。本文的三种拓扑有其各自的有缺点,需要在不同的场合根据实际要求来选择。