卡尔曼滤波器问题可以描述为:使用观测量{I1,I2,…,Ik}和{u1,u2,…,uk}找到最优的sk估算值。卡尔曼滤波算法采用反馈控制的方法估算过程状态:滤波器估算出过程中某一时刻的状态,然后通过测量特定变量的方式获得反馈。因此卡尔曼滤波器可分为两个部分:时间更新方程和测量更新方程。时间更新方程负责及时向前推算当前状态变量和误差协方差估算的值,以便为下一个时间状态构造先验估算。测量更新方程负责反馈,它将先验估算和新的测量变量结合以构造改进的后验估算。具体算法如参考文献所示。
3 实验验证
为考察前文提及的蓄电池SOC估算方法的可行性和有效性,本文以某同产6 V/4.5 Ah铅酸蓄电池为例建立SOC估算模型,并分析该模型的估算精度。试验通过可编程电子负载完成测试流程,通过高精度采集设备获得待分析数据。
3.1 确定电化学安时模型参数
首先,通过一系列恒流放电数据确定电化学安时模型的内部参数。利用0.2、1、2、3 A四组恒流放电数据,如表1中黑体所示,采用最小二乘法计箅得到α、β参数值。电池始终从充满状态开始放电,蓄电池输出电压衰减到5.4 V作为放电截止条件。
经计算得到:α=4.007、β=2.115,为了验证模型的有效性,将如表1所示8组时间数据输入到(6)式,计算出估算的放电电流值。从表1的实际值与估算值之间的比较可以看出,该模型在恒流放电估算上精度较高。同时,从获得的参数可以看出,该铅酸蓄电池由于使用或者制造工艺问题,名义容量已经衰落为 4.007 Ah。
3.2 确定闭环估算中的观测方程
根据前面分析,为实现卡尔曼滤波算法,必须得到如(9)式所示观测方程。考虑到蓄电池的开路电压和SOC的关系以及内阻和SOC的关系均可以使用多项式近似方法获得,本文分别使用涓流放电和大电流间歇发电实验得到实验数据,再通过试验数据采用多项式近似得到具体的函数表达式。
首先,通过涓流放电实验得到式中开路电压和SOC的关系曲线。蓄电池从充满状态,在C/20(0.2 A)放电电流下,持续到放电截止,记录电压曲线如图1所示。涓流持续放电的目的是为了最小化蓄电池的动态效应,有效消除蓄电池内部的化学滞后和蓄电池内阻的影响,从而得到Vcc和SOC的天系曲线。该曲线经过多项式近似,得到如表2所示Voc(Sk)函数表达式。
然后,大电流间歇放电实验得到内阻和SOC的关系曲线。放电循环执行如下流程:(1)10 min 2 A放电;(2)10 min停止放电,得到蓄电池负载电压如图2所示。同时图2也给出了依据放电数据计算出的蓄电池内阻曲线。表2列出了R(sk)函数表达式。与实际蓄电池内阻比较,实验所得内阻数值偏大,其主要原因是将测量和放电连接单元的电阻也视为内阻。由于所有数据均采集于同一实验,这样处理并不会对实验产生影响。
3.3 开环估算性能
为证明(7)式递推估算模型在变电流放电过程中的SOC估算有效性,使用如图3所示的变电流放电试验数据进行验证,图中给出了放电电流曲线和估算的SOC曲线。经(7)式递推计算得到,放电应该终止于4 608 s=76.8 min时刻,而实际放电试验中,放电终止于5 004 s=83.4 min时刻,估算相对误差为8.59%。为减小计算量,递推过程中(7)式被截断于m=5。