·上一文章:WDM无源光网络关键技术研究
·下一文章:PLC控制的防电源短路的电动机正反转控制线路
4.2 不同输入交流电压时的开关管电压波形
图5是负载为12V/1.1A、24V/3.2A时,不同的ui下实测的开关管VT1漏极电压ud的波形。由图可知,当ui在90V~150V低压段时,ud为252V,并保持不变;当ui在210V~260V高压段时,ud一直保持382V不变。由此说明,电源系统实现了输出电压跟随输入交流电压变化的目标。
4.3 输出纹波电压波形
图6为APFC的输出高频和低频纹波电压。由图可知,高频纹波电压约为3V左右,低频纹波频率为100Hz时,波动电压约为10V。因后级为反激式DC/DC变换器,故对输出电压无影响。
4.4 开关电源主要项目测试数据
不同负载和输入交流电压下测试的实验数据如表1所示,表中,Ui、Ii;UO、IO;Pi、PO分别表示整个电源系统的交流输入电压、输入电流;输出电压、输出电流;输入功率、输出功率。样机功率因数cosΦ是采用WT3000型高精度功率分析仪测试得到。具体测试情况是:电源系统未启动时,cosΦ只有0.625左右,但当系统工作后,cosΦ逐渐升高并达到0.952以上,峰值点可达0.989,可见电源系统对功率因数的提升是明显的。
本文所设计的反激式开关电源与普通开关电源相比,具有更低的功耗和电磁污染,而且对样机实测的功率因素cosΦ高于0.95;在输出端电压分别为12V和24V时,对应系统输出纹波电压实测约为104mV和185mV;THD值低至3.75%以下,符合EMI国家标准,整个电源系统的效率范围为85.8%≤η≤87.9%。因此,所设计的开关电源具有较高的实际应用价值,可以将其应用于各种中小功率的电子设备中。