·上一文章:用于音频放大器的多路输出反激式电源
·下一文章:太阳自动跟踪系统的设计
该电路采用CSMC公司0.6/μm的工艺,仿真使用49级模型,得到以下结果:
(1)温度系数。仿真是在输入电压4.0 V,温度为-40~+100℃的条件下进行的。从图3中可以看到基准电压从-40℃的0.963 32 V变化到30℃时的0.962 35 V,因此该基准的温度系数为(ppm/℃):
(2)基准电压的电源抑制比。基准电压的电源抑制比如图4所示。
从图4和图5可以看到,如果没有增加M2,低频时的PSRR只有-90 dB,高频时则大约为-75 dB,电源抑制比的特性不是很好;如果增加了M2管,低频时的PSRR为-120 dB,高频时也能控制在-90 dB内,电源抑制比得到了极大的提高。
(3)基准电压的线性调整率。图6为基准电压的线性调整率特性曲线。从图6中可以看到,基准电压的线性调整率随温度的上升而减小。在25℃时,基准电压从输入电压2.5 V对应的1.027 952 V变化到输入电压5.5 V对应的1.027 982 V,其线性调整率为:
3 结 语
在此分析介绍了一种低功耗基准电压源电路的设计方案,该电路的最大功耗小于1μW,温度系数为21 ppm/℃;同时由于电路结果较简单,易于集成,已经用于电池充电保护芯片。