系统工作过程如下:由控制系统控制可调直流高压电源给储能电容器充电,当充电电压达到设定值后,再控制IGBT按照设定的频率和脉冲宽度导通,产生脉冲电压加在高压脉冲变压器原边,最后由高压脉冲变压器升压,产生所需的高压脉冲加在负载上。
2 高压脉冲变压器设计
依据指标要求,高压脉冲变压器的主要参数如下:变比设计为1:4;次级电压为5 kV;初级电压为1.25 kV;最大脉冲宽度为20μs;频率最大为200 Hz。脉冲变压器的伏一秒数为λ。
式中,N为匝数;U为电压;T为时间(脉冲宽度);△B=Br+Bs(Br为剩余磁感应强度,Bs为饱和磁感应强度);A为磁芯截面积;S为磁芯填充系数。
将U=1.25 kV;T=20μs代人式(2),磁芯材料为非晶,△B为1.6 T,A为0.005 6 m2,可求出原边N为3,由于变比是1:4,所以次变匝数为12。由于脉冲为单极性,磁性还要考虑复位,复位电路原理图如图2所示。
图2中,V1为低压直流电源,R1为限流电阻。由V1通过R1提供一个直流电流给单匝复位线圈A。在高压脉冲变压器工作时,单匝线圈A上会感应较高的电压,利用电感L1,电容C1和高压硅堆VD1对低压直流电源V1进行保护。
3 IGBT选取及驱动电路设计
由于脉冲变压器的次边最大电流为100 A,变比为l:4,所以原边最大电流为400 A,原边电压为1.25 kV。IGBT的额定电流应大于400 A,额定电压应大于1.25 kV。采用ABB公司的5SNA0800N330100,额定电压为3 300 V,额定电流为800 A。
IGBT的触发信号要求一个脉冲宽度在2~20μs可调,脉冲幅度15 V。脉冲频率l~200 Hz可调的方波信号,具备短路和过流保护功能。2-SD315-AI-33是瑞士CONCEPT公司专为3300V高压IGBT的可靠工作和安全运行而设计的驱动模块,它以专用芯片组为基础,外加必需的其他元件组成。
4 可调直流高压电源设计
可调直流高压电源由可控硅调压器、高压变压器、整流桥、储能电容器等几部分组成。工作过程如下:交流220 V供给可控硅调压模块,经过调压模块后输出交流0~220 V,加在工频升压变压器的初级,变压器的次级输出经过全桥整流后,通过电感给储能电容器充电。控制调压模块的输出电压,可以使电容器上的电压达到设定值。
当主回路输出高压脉冲电压为5 kV、脉冲宽度为20μs、脉冲电流为100 A时,单脉冲的能量为10 J。考虑到输出脉冲的平顶,选取储能电容器时,在其工作电压值时的储能为5倍单脉冲能量,即50 J。工作电压为1.25 kV,可求出电容值为64μF。
对于工频高压变压器,需确定其输出电压和功率等主要参数。主电路最大输出频率为200 Hz,每次电容器要放出约10 J的能量,而对电容器的充电时间必须小于5 ms,所以可求出变压器的平均功率为2 kW。考虑工频高压变压器输出电压经过全桥整流后,脉动频率为100 Hz,小于主电路的最大输出频率为200 Hz,所以实际工频高压变压器输出峰值功率会大于2 kW,可以选取5 kW的变压器。高压变压器输出电压实际选取1.5 kV(峰值)。
5 控制系统设计
控制系统原理框图如图3所示。通过计算机控制AO卡 (模拟量输出)输出0~10 V的模拟量,用来控制调压系统中 的可控硅调压器的输出。储能电容器上的电压经过高压采样和AI卡(模拟量输入),由计算机采集。计算机控制DO卡(数字量输出)输出控制信号控制各类启动开关和IGBT驱动板输出触发信号。各类手动面板的开关信号经过DI卡(数字量输入),由计算机采集。