摘要:
当今手机的一个共同发展趋势是LCD和相机总线的串行化,这是为了降低柔性PCB 成本,节省 PCB 空间,以及减少 EMI 组件。然而,在串行方案设计方面,人们可能认为:这些串行化方案会增加额外的功耗,原因是增加了器件。本文将阐明若能降低基带驱动输出,使其配合串化器输入的较低驱动需求,那么串行化方案能够降低链路功耗。设计人员如能了解 LCD 或相机总线的这一 “功率转折” 点,就能降低设计功耗。
串行化趋势:
随着手机需要实现的功能越来越多,且外形越来越复杂,人们开始采用串行化技术来达到手机的设计目标。采用串行化技术就可使用较窄的柔性PCB (FPCB),减少PCB空间,省去一些不必要的 EMI 组件,通过使用较小的连接器来提高可靠性。采用串行化技术,设计人员可以大幅减少通过 FPCB 发送的信号线数量,从而实现更小巧、更复杂的连接 设计。但即便有这些好处,人们还是心存疑虑:增加额外的器件来实现串行化方案,会不会导致系统功耗增加。鉴于手机设计有严格的功耗限制,因此,本文将讨论采用串行化技术降低功耗的真实性。
并行实现方案:
图1所示为一个典型的并行方案。
图1所示为一个典型的并行方案。
图1:典型的并行方案。
在这个架构中,基带处理器 (baseband processor, BP) 驱动电路的负载包括主PCB的走线、FPCB、FPCB连接器,以及翻盖PCB上的走线和最终的显示器负载。BP驱动电路必须能够直接采用 LVCMOS 信令来驱动该负载。
采用RGB接口的显示器可能需要高达24位的数据,而这对WQVGA显示来说就需要8MHz或更高的带宽,具体要视显示屏分辨率而定。显示屏分辨率越高,显示器接口所需的信号带宽就越大。
串行方案:
在串行显示方案中,在主PCB和翻盖PCB的数据通道上放置了一对器件。串化器位于主PCB上,将并行显示数据转换成串行数据流,并通过FPCB传送到解串器。根据所采用的串行化架构而定,可以把数个串行数据信号缩减为一对差分信号。解串器将串行数据流转换成驱动显示器接口的并行数据流 (参见图2)。
图2:串行实现方案。
并行方案和串行方案有着重要的差别,而正是这些差别使得串行方案得以减少链路功耗。在主PCB上使用一个串化器后,BP 输出驱动电路的要求就大大降低,这是因为串化器输入的驱动负载比并行显示器通道所需的低得多。采用串行接口后,BP还可降低输出电压,并允许串化器处理到显示器驱动电路的电平转换。例如,显示器工作电压为2.7V,BP可将输出到串化器的电压降至1.8V。然后,解串器将产生显示器所需的2.7V信号。
此外,大多数串行方案采用差分信令协议,类似于低压差分信号 (LVDS)。这种信号能大幅降低通过FPCB传送数据所需的电压振幅,还可减小信号链路的EMI。通过减小信号振幅,并因串行流中EMI减小而取消双重屏蔽FPCB,串行方案就可以降低功耗。
功率转折点:
对于给定的应用,采用串行方案开始比采用并行方案节省功耗的转变点在于功率转折点。就我们的例子而言,使用系统参数的经验估算数值,通过比较手机中串行与并行数据路径的显示链路功耗,就可以近似得到功率转折点。可从以下方程得到动态功耗: