图3 从USB简单充电100mA和从AC适配器充电350mA不需要枚举,这是因为USB充电电流不超过“一个单元负载”(100mA)。3.3V系统负载总是从电池汲取电流。
USB电源
所有主机USB设备(如PC和笔记本电脑)至少可以供出500mA电流或每个USB插口提供5个“单元负载”。在USB述语中,“一个单元负载”是100mA。自供电USB插孔也可以提供5个单元负载。总线供电USB插孔保证提供一个单元负载(100mA)。根据USB规范和图1的说明,在缆线外设端,来自USB主机或供电插孔的最小有效电压是4.5V,而来自USB总线供电插孔的最小电压是4.35V。这些电压在为锂离子电池充电时(一般需要4.2V),其余量是很小的。
插入USB端口的所有设备开始汲取的电流不得大于100mA。在与主机通信后,器件可决定它是否可以占用整个500mA。
USB外设包含两个插孔中的一个。两个插孔都比PC和其他USB主机中的插口要小。“SeriesB"和更小的“Series Mini-B”插孔示于图2。从SeriesB的引脚1(+5V)和4(地)和Series Mini-B的引脚1(+5V)和5(地)得到电源。
一旦连接,所有USB设备需要主机对其加以识别。这称之为“枚举”。在识别过程中,主机决定USB设备的电源以及是否为其供电,对于被认可的设备可以将负载电流从100mA增大到500mA。
简单的USB/AC适配器充电电路
某些非常基本的设备不希望额外的软件开销,此开销对有效USB电源的分类和最佳使用是需要的。若设备负载电流限制到100mA(在USB中称之为“一单元负载”),则任何USB主机、自供电插孔可以对设备供电。对于这样的设计,一个非常基本的充电器和稳压器电路示于图3。
每当器件连接USB或插入AC适配器时,此电路就为电池充电。在同一时间,系统负载总是连接到电池,在这样的情况下,通过简单的线性稳压器(U2)可提供高达200mA电流。若系统连续地汲取这样的电流量而电池正在以100mA电流从USB充电,则电池仍将放电,这是由于负载电流超过了充电电流。在大多数的小系统中,峰值负载只发生在总工作时间的一小部分时间内,所以只需要平均负载电流小于充电电流,电池仍将充电。当连接AC适配器时,充电器(U1)最大电流增加到350mA。若在同一时间连接USB和AC适配器,则AC适配器自动处于优先供电的地位。
U1的一个特性是USB规范所要求的(也是一般充电器的法则),即决不允许电流从电池或其他电源输入回馈到电源输入。在一般充电器中,用输入二级管可保证做到,但最小的USB电压(4.35V)和所需的锂离子电池电压(4.2V)之间的差值很小,甚至用肖特基二极管也是不合适的。基于此原因,在U1 IC中断开全部反向电流通路。
图3的电路有一些局限性,使它不适于一些可充电的USB设备。最明显的局限性是其相当低的充电电流,使得对大于几百毫安一小时的锂离子电池充电耗费时间很长。第二个局限是负载(线性稳压器输入)总连接到电池。在这种情况下,系统不能够在插入后立即工作,这是因为电池深度放电,在电池达到一个足够的电压使系统工作之前有一段延迟时间。
负载切换和增强型电路
在更先进的系统中,充电器或围绕充电器需要一些增强性能。这包括可选择的充电电流以适应不同电源或电池的供电能力,插入电源时的负载切换以及过压保护。图4所示电路增加了这些功能,它是借助于充电器IC电压检测器驱动的外部MOSFET实现的。
MOSFET Q1和Q2以及二极管D1和D2旁路电池,直接连接有效(USB或AC适配器)电源输入与负载。当电源输入有效时,DC输入具有优先地位;U1防止在同一时间两个输入都有效。二极管D1和D2防止通过“系统负载”电源通路产生的输入之间的反向电流,而充电器具有内置电路排除通过充电通路(在BATT)的反向电流。
MOSFET也提供AC适配器过压保护(高达18V)。欠/过压监控器使AC适配器电压只在4V和6.25V之间。
MOSEFT Q3在不存在有效外部电源时导通,使电池连接到负载。当USB或DC电源连接时,PON(电源开关)输出立即断开Q3,使电池与负载断开。系统在加外部电源时能立即工作,既使电池深度放电或损坏也能立即工作。
当连接USB时,USB器件与主机通信决定负载电流是否可以增加。若主机允许,负载开始在一个单元负载并增加到5个单元负载。5到1个单元负载的电流范围对于一般充电器(不是设计用于USB)来说存在一个问题。一般充电器的精度,尽管可满足高电流要求,但通常在低电流设置方面不能满足要求,这是由于电流检测电路的偏差造成的。其结果是小范围充电电流(1个单元负载)必须设置得足够低,以保证不会超过100mA限制。例如,对于500mA的10%精度而言,输出必须设置为450mA,以保证它不会超过500mA。这仅仅是可接受的;然而,为了保证低充电电流不超过100mA ,其额定电流必须设置为50mA,而最小值可能是0mA,这显然是不可接受的。若USB充电在两个范围都有效,则需要有足够的精度,使得最大可能的充电电流不超过USB限值。
在某些设计中,系统电源要求用小于500mA USB预算分别供电负载和充电电池是做不到的,但用AC适配器就不成问题。图5所示电路(图4的简化子系统)是一个经济的连接方法。USB电源不直接接到负载。充电和系统工作仍然发生在USB电源,但系统保持与电池的连接,其限制和图3一样:在连接USB时,若电池深度放电,则系统可以在工作前有一段延迟。若连接DC电源,则图5工作状态与图4相同,无等待时间,与电池状态无关,这是因为Q2截止,通过D1系统负载从电池转到DC输入。
镍氢电池充电电路
尽管锂离子电池能为大多数便携装置提供最好的性能,但NiMH(镍氢)电池仍然是低成本设计的可行选择。在负载要求不是太严格时,保持低成本的一个好方法是用NiMH电池。这需要一个DC-DC变换器升压,一般从1.3V电池电压提升到器件可用的电压(一般为3.3V)。由于任何电池供电器件需要稳压器,所以,DC-DC变换器仅仅是一个不同的稳压器。
图6所示电路,用独特的方法为NiMH电池充电,并且不用外部FET在USB输入和电池之间切换系统负载。“充电器”实际上是一个工作在电流限制下的DC-DC升压变换器(U1)。以300和400 mA之间的电流为电池充电。尽管没有精密的电流源,但它具有适当的电流控制,甚至在电池短路时也能够保持电流控制。DC-DC充电拓扑相对于一般线性方案的最大优势是能有效地利用有限的USB电源资源。在以400mA电流NiMH电池充电时,电路从USB输入仅汲取150mA。而充电时剩余350mA用于系统。
二极管D1实现从电池到USB的负载拉出。不连接USB时,升压变换器产生3.3V输出。连接USB时,D1上拉DC-DC升压变换器(U2)输出到4.7V左右。当U2输出上拉时,它自动关闭而从电池汲取的电流小于1mA。在USB连接时,若对于输出从3.3V变换到4.7V不能接受,则可以加入一个与D1串联的线性稳压器。
此电路的限制是依靠系统来控制充电结束。U1仅仅做为一个电流源,若长期不管它,它将会过充电电池。R1和R2置U1的最大输出电压为2V,做为安全限值。“Charge Enable”(“充电使能”)输入起到系统结束充电作用以及枚举前降低USB负载电流的作用,这是由于充电器的150mA输入电流大于一个负载。