在工作区域,电压增益首先随着频率的增加而降低,这确保了零电压开关所需的相位滞后。控制电路通过改变频率来改变系统增益。最小增益和最大增益之间的差距相当小,因此谐振转换器需要很窄的DC电压输入范围。在这个电源设计中,由PFC级提供窄输入电压范围,建议采用连续传导模式PFC级。
利用PFC级,LLC转换器的输入可设置在400V左右。如果所需输出电压为12V、匝数比为40:1,则额定负载下需要1.2的DC增益。无论负载情况如何,频率始终不变。
为便于说明,假设输入电压提高到480V,则控制电路需把增益降至1.0,以保持12V的输出电压。在这种情况下,频率会在115kHz(满负载)和130kHz(20%负载)之间变化,从图中可看出何时决定不同负载下的增益曲线与增益为1.0的线在哪个频率下相交。利用前述应用中采用的前端PFC级,在缺输入半波的情况下需要一些额外的增益,即所谓的“保持”时间要求。
同步整流
次级端的同步整流级是利用新的FPP06R001模块来构建的,如图6所示。
图6 同步整流器模块如何连接在变压器的次级端上
用来调整次级电压的二极管通常由MOSFET代替,该模块包含了栅极驱动器和功率MOSFET,采用外引脚极宽的小型单列直插封装,可减小寄生电感和电阻。
利用模块来代替分立式组件可以提高效率、减小EMI并简化总体设计。模块中MOSFET的RDS(ON)比分立式解决方案中的小10%,总体封装阻抗小16%,振铃因此减少,从而减小了EMI。栅极驱动器回路的尺寸很小,这又进一步减小了EMI辐射,增强了抗干扰能力,尤其是对漏极上的dv/dt干扰。由于两个棘手回路的布局都已在模块内完成,所以对设计人员而言总体设计变得较简单。
图7解释了让栅极驱动器靠近功率MOSFET为什么如此有用。栅极驱动器的非零输出阻抗ZDRV 必须通过寄生阻抗Zstray1和Zstray2,以及栅极阻抗Rg来控制MOSFET,尤其是关断。这时,漏极上的高dV/dt加上栅极路径上的高阻抗,可能引起MOSFET的寄生导通。而利用极短的连线和功能强大的栅极驱动器,几乎可以实现完美的开关。
图7 栅极驱动器电路中的寄生阻抗
通过分析功率MOSFET上的电压级,可以创建栅极驱动器信号,确定开关导通的准确时序。一旦完全导通,开关上的电压降可利用公式RDSON×IOUT 算出,因此RDSON越低,电压降就越低,功耗也越低(这时开关损耗忽略不计)。确定正确的功率开关导通和关断时间是非常重要的,这样就可避免体二极管的传导,后者会造成电流换向,最终增大电压降。
下表比较了在输出功率为400W(24V,17A)、结温为100℃时,采用不同整流器获得的结果:
有意思的是,输出整流器的功耗只与输出电流有关,而与输出电压无关。输出电流越高,同步整流解决方案就越有优势。肖特基二极管的实际限制在10A左右,超出这个限值,整流器的功耗会变得相当大,这是因为正向电压在某种程度上依赖于电流。不过,对于较高的输出电压,肖特基二极管可能更好,因为电流更小并且无需驱动电路。
电源系统
在欧盟指令下,一种新的电源效率测量方法已被采用,可在25%、50%、75%和100%的额度输出功率下对输入输出功率进行测量。利用这种方法,电源效率可达到93.8%。
图8 初级端和次级端模块采用相同的尺寸,有利于实现非常精细的机械解决方案