图3中,绿色曲线的较厚区域代表电流纹波,PFC IC在峰值输入电压下消耗电流较多,过零时没有电流。粉色曲线代表整流器输入电压,蓝色曲线为输出电压。
图3 CCM PFC的行为
LLC拓扑
提高电源效率的方法之一是采用零电压开关拓扑。在这种拓扑中,电路中的电源开关在电压极低时导通。对于钳位感应开关MOSFET,导通损耗PON LOSS可由下式粗略求得:
IL为流经MOSFET的负载电流,VDS(SW)为MOSFET导通前的漏源电压,tON为导通时间,而fSW 则为开关频率。
在硬开关拓扑中,VDS(SW)是总线电压,对带有PFC前端级的应用来说一般约为400V。对于零电压开关,该电压被降至MOSFET二极管的正向电压降,在1V左右,从而极大地减小了导通开关损耗。
图4所示为LLC谐振转换器的模块示意图。其核心组件是谐振网络,在输入端电压波形和流入输入端的电流之间产生相位滞后,加载在输入端的电压波形是方波,利用半桥或全桥电路很容易就可以从PFC输出电压中产生。
图4 LLC谐振转换器模块示意图和零电压开关波形
如果忽略桥式电路中死区时间效应以及更高阶谐波的出现,那么流入谐振网络的电流可近似表示为正弦波。由于流入谐振电路的电流滞后于电压基波,当MOSFET处于导通状态时,电流从两个方向流入,如图4所示。MOSFET在电流流经体二极管时导通,导致“零”电压开关。这种方法带来的一个额外好处是导通时产生的EMI较低,这是因为高dv/dt和di/dt转换时间要短得多,而且通常没有标准硬开关应用中不可避免的反向恢复效应。
由于谐振电路的输出是周期性的,因此需要对之进行整流。这可以采用如图4所示的全波整流器或一个带中心抽头(centre-tap)的整流器来完成。
最后,AC-DC电源中的谐振网络基本上都会采用一个变压器。该变压器执行两项任务:其一是提供初级端和次级端之间必需的安全隔离;其二是通过它的匝数比控制电源的总体电压转换比率。
为了避免Q1和Q2同时导通的风险,需要一定的死区时间。以Q1的关断波形为例。流经开关的电流很大,接近峰值电流。关断期间的电压摆幅为满总线电压,因此关断步骤是无损耗的。
要确保Q2的零电压开关,Q1的漏源电容完全充电十分重要,这意味着充电时间不应该超过死区时间。若总线电压为VBUS,开关时电流为ISW,有效漏源电容为CDSeff,则电容的充电时间tSW可由下式计算出:
VBUS由设计条件事先确定。如果CDSeff为零,Q2就会如预期地实现零电压开关。如果CDSeff非常大,Q2为硬开关工作。轻载下ISW很小,当负载足够小时,最终也会发生Q2硬开关。
有时可为每个MOSFET并联一个电容。如果其容量选择适当,就可以降低关断损耗,同时又不影响较轻负载下的零电压开关性能。
LLC谐振转换器是让谐振转换器与一个电感串联。这样一来,谐振电路中就有两个电感和一个电容,故名为L-L-C。图5显示了一个实例电路的增益特性。
图5 LLC谐振转换器增益曲线实例