主回路设计
大功率LED照明恒流驱动主电路采用优异的BOOST和DC/DC的两级组合方式,具有良好的动态响应和稳流特性,解决了电网的谐波污染问题,使大功率LED驱动电源更加绿色环保。
BOOST采用主动式有源功率因数校正(APFC)电路,工作在连续模式,谐波电流和开关管电压电流应力小。DC/DC采用半桥LLC串联谐振转换器,元器件数量有限,谐振储能(tank)元件能够集成到单个变压器中,因此只需要1个磁性元件。在所有正常负载条件下,初级开关都可以工作在零电压开关(ZVS)条件,而次级二极管可以采用零电流开关(ZCS)工作,没有反向恢复损耗。特别适用于中、高输出电压转换器的高性价比、高能效和EMI性能优异的解决方案。
传统功率因数校正电路技术复杂、设计步骤繁琐、所需元器件多、体积大而且成本高。因此,设计时往往要在性能和成本之间进行折衷。本设计采用了IR1150,它是一种新型的单周期AC/DC功率因数校正控制芯片,采用了IR公司的专利单周期控制(0ne-cycle control,OCC)技术,无须传统PFC电路所需的模拟乘法器、输入电压采样以及固定的三角波振荡器,大大简化了PFC电路的设计并缩小了装置体积。
半桥LLC串联谐振转换器采用飞兆半导体公司推出的高集成度绿色FPS功率开关FSFR2100。其采用零电压开关(ZVS)技术,能够大幅降低MOSFET和整流器的开关损耗。采用这种技术,此FPS开关无须散热器即可处理高达200W的功率,使用散热器更可处理高达450W的功率。较之于传统的硬开关转换器拓扑,FSFR2100的效率提高了10%。它可以在输入和负载大范围变化的情况下调节输出,同时开关频率变化相对很小。此外,它可以在整个运行范围内实现零电压切换(ZVS)。最后,所有寄生元件,包括所有半导体器件的结电容和变压器的漏磁电感和激磁电感,都是用来实现ZVS的。
照明恒流驱动电源主电路如图3所示,前级APFC实验电路输入电压AC 220V,额定输出DC 380V,开关频率f选择70kHz,后级半桥LLC串联谐振转换器。输出电压范围:DC 300~360V,输出额定电流350mA,谐振频率f0选择100kHz,变压器匝比n=Np/NS=0.6,功率满足150~300W的输出功率范围。主电路依次是85V~264VAC→整流→PFC→380VDC→DC/DC(隔离)恒流→多颗LED串联,APFC可以选用功率因数校正控制器IR1150、L6562和FAN7527B等,半桥LLC串联谐振转换器选用FSFR2100。
图3 大功率LED照明恒流驱动电源主电路
关键技术设计
LED照明驱动方式,由于直接将RSET连接FB端会造成RSET的功耗过大,所以功率较小的LED恒流驱动电源往往在FB反馈端和RSET之间放置一个运算放大器以降低功耗。如图4所示,运算放大器获取采样电阻RSET上的电压,结合其他电阻和电容就可以构成一个完整、高效率的大功率LED恒流驱动电路。这样就能在确保LED获得恒流供电的同时,将RSET的功耗降低到可以接受的水平,从而使LED两端的电压尽可能大,流经的电流也尽可能大。
图4 功率较小的LED恒流驱动
大功率LED恒流驱动电源采用先稳压,再限流的混合方式。为适应负载需要,电压需要保证在一定范围内。LED的Vf值在3~3.6V之间,那么按LED实际数量即可确定电源部分需要调整的电压范围。大功率LED恒流驱动如图5所示,设定稳压源的最大设定值VSET(比如DC360V),设定稳流源的设定值ISET(300mA~1.4A),采样RSET上的电压,若超过稳流源的设定值时,则输出电压相应下降,根据LED灯串联数量的多少,输出电压可降至最小值(如DC 300V)。
图5 大功率LED恒流驱动
开关调节控制模式与电阻限流方式相比,电路成本较高;控制环路可准确调节LED电流;可实现幅值和低频PWM调节;能够实现LED特性的自动温度补偿;宽输入电压范围;基本上不需散热器,可节省成本,对于高输入电压和大工作电流,其他驱动方案会导致非常高的损耗,然而此模式仍能保持高效工作。
技术指标
根据上述设计方案,大功率LED照明恒流驱动电源的主要技术指标为:输入电压85~264V;频率47~63Hz;输出功率100W;输出电流:350mA±5%或700mA±5%;输出方式:多颗1W以上大功率LED串联方式;输出电压范围:DC 300~360V,效率≥90%,功率因数≥0.99,谐波≤5%,稳流精度≤5%;具有定时、调流、关机功能;具有过压、过流、短路和过温保护功能;全密封,防水要求IP65,外型尺寸(L×W×H)=185mm×70mm×45mm,重量1.5kg。工作温度-40~+70℃,储存温度-50~+85℃,符合相关安规、ROHS和电磁兼容标准、防雷设计(ICE-61000-4-5 Class 4)。较好地满足了照明工程的要求。