1 系统设计原理
PWM型的开关电源整体框图如图1所示。变压、整流、滤波模块处理起来比较简单,只要采用相应的变压器、单相全波整流、电容式滤波即可实现,这里不用更多的篇幅介绍。此系统的核心模块是方框图中的闭合(负反馈)模块。如果直接采用Boost型DC-DC升压器,实现起来简单,但输出/输入电压比太大,占空比也大,而将使输出电压范围变小,难以达到较高的指标,且为开环控制。对此采用Maxim公司生产的专用开关芯片TL494芯片,它采用开关脉宽调制(PWM),效率高,外围电路也较简单,可以方便实现闭环控制。
1.1 TL494工作原理
TL494内部结构如图2所示,它是一种固定频率可自行设置,并应用脉空调制的控制电路,其中,振荡频率fosc=1.1/(RTCT)。具体来讲,由于误差放大器输入口1,2(或3,4)的值不等,产生偏差,偏差送入PWM比较器与锯齿波(锯齿波的频率由振荡频率确定,幅值是定值)比较,在偏差大于锯齿波范围内时,9口(或10口)输出低电平,在偏差小于锯齿波范围内时,9口(或10口)输出高电平。若偏差值越大,TL494输出高电平的区间越小。由此可见,通过调整误差放大器输入口的偏差可改变占空比。
1.2 升压变换器的工作原理
如图3所示,通过控制开关管Q1的导通比,可控制升压变换器的输出电压。它的工作原理是:设开关管Q1由信号VG控制,当VG为高电平时,Q1导通,反之,Q1关断。当Q1导通时,电感两端电压VL=Vi,电感储能增加,同时负载由电容供电。当Q1断开时,因电感L上的电流不能突变,故电感电流iL向电容和负载供电,电感上储存的能量传递到电容、负载侧。此时,iL减小,L上的感应电动势VL<0,所以Vo>Vi。由此,当Q1导通的时间越长(即占空比越大),电感上储存的能量越多,Vo也越大。
2 系统总体设计
基于前面的分析,设计的系统接线图如图3所示。
误差放大器的反相端2口输入给定值(可用单片机实现,限于篇幅,不做介绍),用来控制输出电压;同相端1口输入/输出电压的反馈电压,形成闭环控制。当输出电压高于期望值时,反馈输入1口的电压升高,误差放大器的输出增加,占空比减小;当输出电压减小时,基本可以做到与期望值相等,从而维持输出电压的稳定。若想增大输出,可升高2口的电压。控制过程如下:原系统稳定,当升高2口电压,1口电压瞬时不变,误差放大器输出减小,占空比变大,电压升高。若想减小输出,可降低2口的电压。