经仿真实验验证:电压瞬时值外环的P调节器比例系数的增加,可以进一步减少静态误差,但是随着比例系数的增大,控制系统的相位裕度减小,系统变得不稳定。当比例系数太小时,系统的稳态误差又会增大。该仿真实验中,输出电压幅值仅为278V,没有达到指令电压311V。
图6为逆变电源含电感电流内环的三环控制仿真实验波形,设置系统仿真时间为1.2s,在0.4s时突加负载,在0.9s时突卸负载。与双闭环控制方案的仿真结果对比可看出,系统在空载时输出幅值为310V,具有很好的稳态精度。输出电压有效值外环的加入明显的提高了控制系统的稳态性能。从阻性负载投载和卸载的仿真波形中可看到,在突加和突卸负载后,系统经一个正弦波周期就可以达到稳定,系统稳态输出波形较好。
本系统控制芯片采用TI公司的TMS320F2806芯片,系统采用含电感电流内环的三环控制方案。本系统在第K次采样的数据在下一次(第K+1次)中断中参与计算调节,即采样值延迟一个中断周期(83μs),由于时间很短可以忽略不计。实际系统中,电感电流的采样不能采用电流互感器,而应采用霍尔电流传感器;因为电流互感器无法检测到电感电流中的直流分量,无法利用电流环的快速性,来消除输出电流中直流分量带来的负面影响,所以电感电流的检测应该采用霍尔电流传感器。图7为突加50°%额定负载的实验波形图。
从实验结果可以看出,实验波形与仿真波形比较吻合,逆变器具有较好的稳态特性,说明了该控制方案取得了较好的效果。
4 结束语
本文总结了常用闭环瞬时控制方法的优缺点,提出了基于TMS320F2806的数字三环控制逆变器的方案。输出电压有效值反馈环用来调节输出电压的幅值,保证了稳态精度;输出电压瞬时值反馈环使系统对扰动的响应时间大大减少,保证了输出电压具有良好的正弦性;电感电流瞬时值反馈环使滤波电感上的电流能快速准确地跟踪电流指令,提高了控制系统的稳定性、快速性,改善了输出电压的品质。
系统的控制方案的仿真和实验结果表明,在空载和带载的情况下,系统均可输出稳定优良的正弦电压波形。该数字化逆变电源设计实现更为简便,精度较高,具有优异的性能,可以达到甚至超过模拟双环控制的效果。