首 页文档资料下载资料维修视频包年699元
请登录  |  免费注册
当前位置:精通维修下载 > 文档资料 > 家电技术 > 单元电路介绍 > 电源电路
数字电路中显示译码器设计的分析与研究
来源:本站整理  作者:佚名  2011-07-13 17:11:54



摘要:针对显示译码器设计时,输入、输出变量难以确定的问题,提出了功能解析和变量关联设计法。显示译码器输出经驱动器使显示器工作,输出变量的多少和状态取决于显示器的种类,输入变量的多少和状态与输出显示结果有关。研究表明,显示译码器输入变量的位数,n与输出显示结果的个数N之间满足2n=N或2n-1<N≤2n,输出变量的个数与显示器的输入相同,状态相互对应。
关键词:译码器;驱动器;显示器设计;输入变量;输出变量

    显示译码器是数字电子技术组合逻辑电路中一个很重要的器件,在数字电子技术应用中不可缺少,特别是在信息技术数字化的今天,其应用越来越广泛,但在组织开展科技创新和电子设计制作竞赛活动中,学生在设计制作抢答器、记分器、记时器等电子产品时,总是对如何准确设计出符合功能要求的显示译码器胸中无数,本文对此问题进行了分析与研究。

1 显示译码器的功能和种类
    实现译码功能的逻辑电路就是译码器。译码是编码的逆过程,数字化系统中,任何信息或数据,无论是文字、数字,还是符号或图形,在监测、控制、传输时都要转换为二进制代码,这就是编码;而在监测、控制、传输过程中或结束时,都要显示相应的信息处理结果,这就必须将二进制代码还原为对应的文字、数字、符号或图形,这个过程就是译码。在数字电子技术中,译码器有两种,即变量译码器和显示译码器。
    变量译码器分为二进制和非二进制两种,二进制译码器就是输入的二进制代码的位数n与译码还原输出信息的个数N之间为N=2n,非二进制译码器就是不能满足此种关系的译码器。
    显示译码器其显示的内容有文字、数字、符号等,其显示用的材料有荧光、液晶、LED等,其显示的形式有分段式、重叠式、点阵式等,其工作方式有共阴极和共阳极等等。
    无论是变量译码器还是显示译码器都有一些常用的定型产品,如二进制的有三线-八线译码器,即输入三位二进制代码,输出八个信息,满足23=8。常用的集成芯片是74系列和54系列,最典型的芯片是74LS138,显示译码器最典型的是非二进制的一种十进制数译码器,型号是74LS48。但是在实际应用和创新设计中,这些产品不足以满足不同功能的要求,必须设计新的显示译码器,而在设计过程中问题最多的就是设计显示译码器时,输入、输出变量的确定。

2 显示译码器的设计步骤
    显示译码器是属于数字电子技术中的组合逻辑电路,所以在设计时,同样应该遵循组合逻辑电路的设计方法,共有四个步骤:一是根据功能要求确定所设计电路输入、输出变量及其状态的含义;二是根据功能的要求列出真值表;三是用卡诺图化简,得出输入、输出变量的逻辑表达式;四是根据逻辑表达式画出逻辑图。
    从以往的教学实践、技能竞赛以及课余活动中发现,在组合逻辑电路设计的四个步骤中,对于每种类型电路设计难点是不一样的。譬如,在设计输入、输出变量符合二进制关系的组合逻辑电路时,最关键的是第二步根据功能要求列出真值表;而在设计具有非二进制特征的组合逻辑电路时,重点是要把握住第三步具有约束项的卡诺图化简;当设计要求用指定元器件实现组合逻辑电路时,其设计难点是第四步,必须把化简出的逻辑表达式按设计要求转换为能用指定元器件实现的功能关系,再画出逻辑图;那么在设计显示译码器时,最容易混淆和理不清的就是设计过程中的第一步。

3 显示译码器的设计技巧
    按照组合逻辑电路设计的方法,针对显示译码器的特点,结合设计实践中存在的突出问题,对显示译码器设计过程中的第一步进行了分析与研究,得出了如何准确地确定所设计电路输入、输出变量的技巧和方法。

a.JPG


    首先要了解显示译码器在数字电路中的作用,确认其在显示电路中的功能关系,如图1所示,从图中得知数字显示电路是由显示译码器、显示驱动器和结果显示器几部分组成。显示译码器就是将数字电路中经过监测、控制、传输后的二进制代码,进行译码还原成相应的文字、数字、符号等信息,并以不同的形式显示出来;显示驱动器是确保结果显示器正常工作的电路,根据结果显示器的材料、功率、电路的不同,采用限流电阻驱动、达林顿驱动、继电器驱动等多种方式;显示器显示的内容、方式等种类很多,最常见的定型产品是七段数码显示管。所以设计显示译码器时要兼顾译码器、驱动器、显示器三部分考虑。

关键词:

文章评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分)
Copyright © 2007-2017 down.gzweix.Com. All Rights Reserved .
页面执行时间:74,117.19000 毫秒