SPICE同其它高性能的软件相结合可为功率电子电路和系统的仿真创造更为有利的计算机辅助分析和设计工具,这是其发展的一个重要方向之一[5]。
2.2 离散时域仿真法
1979年美国弗吉尼亚电力电子中心李泽元教授首先提出了开关DC—DC变换器的离散时域仿真法。 20世纪80年代后期, 清华大学蔡宣三教授对该方法进行了深入的研究。此法是研究拓扑变化及元件参数变化对系统瞬态特性影响的有力工具。 在应用时的基本方法是:列出非线性系统的分段线性方程,求状态转移规律,由此导出非线性差分方程,再用计算机求解。它可用以仿真多环控制系统,实现不同的控制规律,快速、准确、高效率地研究拓扑变化和元件参数变化对系统瞬态特性的影响。还可用以仿真稳态过程、大信号响应及小信号相应。其缺点是,得不到解析形式的数学方程,物理意义不清晰。文献[6]将M+N维的开关电源分解成慢和快两个子系统,分别以大步长和小步长积分,N维子系统的输出以低阶多项式插值,作为M维子系统的输入,从而达到了快速性和准确的统一。文献[7]采用截断
Taylor级数,但存在时间量化误差。文献[8]采用Chebeyshev级数法计算状态转移矩阵,通过求解一简单的代数方程获得拓扑改变的时刻,克服了文献[7]中存在时间量化误差的缺点。另外,值得提出的一种方法是改进节点法(MNA)。它部分的改善了节点法的处理电源不充分、不能包含与电流有关的元件、不便于得到支路电流、难以实现有效的数字积分、分析电路的零极点要用特殊技术等缺点。但仍存在效率低、需要更多电路变量等问题。文献[9]提出一种开关构造函数,以S域改进节点方程来描述变换器的动态行为,通过拉氏反变换获得时域响应。这种方法中所有的拓扑结构可用一个单一的改进节点矩阵来代替,因而仿真速度快,且没有作任何近似[9]。
众所周知,快速性和准确性是现有仿真算法的一大矛盾。因此,如何在这两者之间取得更好的协调和统一,将是数值仿真今后发展的一个重要方向[5]。