89C2051的T0、T1 定时器和INT0引脚,以及P1端口的6个口线。由于该单片机与89C51相兼容,因此在硬件电路设计和软件编程方面更加方便。考虑到
AT89C2051本身固有的特点,设计时需注意以下几点:首先,它的程序存储器空间为2kB,因此所有的跳转和分支转移指令都要限制在这个范围内。其次,它没有MOVX指令,也就是说,它不支持外部存储器操作,这一点设计时一定要考虑到。此外,
AT89C2051自身还有一些其它特点,譬如可以使用命令使其工作在低功耗模式等。单片机利用T0定时器和INT0引脚来测量输入方波信号的周期,而使用外部中断0来控制定时器T0是否开始定时。当定时器T0的运行控制位复位时,不管P3.2引脚是何值,定时器都不工作。只有当定时器T0的运行控制位置位后,才能根据P3.2引脚状态来决定定时器是否工作。当P3.2引脚出现高电平时,定时器T0开始定时;而在其出现低电平时,定时器T0停止工作,并将测量信号的周期保存在定时器的16位寄存器中。系统初始化时,可通过设置使T0 和T1定时器工作在模式1方式。T1定时器主要用于形成1秒钟定时信号,用以为测量里程提供时间条件。
2.3 液晶显示电路和数据存储电路
本设计的显示部分采用液晶显示模块LCM0825该模块与单片机的接口电路如图3所示。LCM0825是8位段码式液晶显示模块,它内部集成有LCD控制器、LCD驱动器和RAM,因而可方便显示数据的编程。液晶显示模块采用3~4线串行数据输入,可直接与单片机接口。由于串行接口方式节省了所需的口线和系统资源,因而使系统具有较高的资源利用率。该模块可在2.7V~5.2V电压下工作,其低功耗及背光可调特性使得设计更具有经济性和通用性。LCM0825能够显示8位数据,每一个数据均以8段码的形式放在其内部显示RAM区,并用模块内RAM的两个存储地址来放置一个数据的8段码。8位数据共占用内部16个地址。每一个数据位的8段码存放形式及高低地址存放段码的顺序都和表1所列的第8位数据的8段码存放格式一样,只是段码的存放地址不同。所以,编程时一定要考虑数据的存放地址和形式。在使用该液晶显示模块时,VCC与VLCD之间可用一个50kΩ的电位器来调整背光。3 系统软件设计
3.1 数据处理过程
待测信号经预处理电路后加至单片机的P3.2(INT0)引脚可为单片机测量信号周期提供有效的输入信号。单片机通过检测P3.2引脚电平来决定是否启动测量周期程序。当该引脚为高电平时系统处于等待状态,要一直到该引脚出现低电平时才开始测周期。测量时首先将零赋给THO、TL0两个寄存器,以将定时器T0的运行控制位TR0置位,同时也将ET0置位以允许定时器T0中断。然后再判断P3.2引脚是否还为低电平,如为低电平则等待,直到出现高电平再开始判断P3.2引脚是否为低电平,当其不是低电平时再等待。一旦出现低电平,则立即复位TR0以终止定时器,以结束测周期程序。测周期过程中可能会发生定时器T0的中断,每发生一次中断则将R0寄存器加一,因此R0实际上是周期值的高字节。测出的周期值存储在R0、TH0、TL0三个寄存器中,然后将其转换成速度。速度是用车轮的周长除以脉冲周期得到的。由于所测周期的单位是μs,因此在相除转换时应将被除数扩大106倍,以保证得出正确的速度。每秒进行一次里程数累加时,可用当前的速度值加上一秒前的里程数得出当前的总里程数,得出的速度和总里程值放到E2PROM中。通过k1、k2键可显示速度或里程值,k1键为速度键,k2键为里程键,两个键可以随时设置。要显示的速度或里程放到R1、R2、R3三个寄存器后即可调用转换BCD代码模块,以将数据值转换成压缩的BCD代码并显示处理。考虑到对响应时间的要求,BCD代码模块采用快速算法。数据转变成相应的压缩BCD代码后,可调用显示消多余零和显示数据存储模块,并将要显示的数据值通过查表转换成相应数据的8段码放到显示缓冲区以备显示。当然,编程时要把十进制数据的相应8段码放在表格中,这样才能进行查表以得到相应数值的段码。此过程的另一个重要目的是消除最高有效位前面的多余零,以使多余零的段码处于不显示状态,从而保证数据以正常的格式显示出来。最后,将显示缓冲区的8位8段码经串口送至液晶显示模块进行显示。
上一页 [1] [2] [3] 下一页