2.4.3 缺点
1) 结构复杂, 增加零部件较多, 给机舱布置带来困难。
2) 水暖加热速度较慢。
3) 水暖PTC加热器电功率大约5.5 kW, 这个功率相对于总的电池容量来说是非常巨大的消耗, 严重影响了电动车的续驶里程。
3 热泵加热方式
热泵加热是在电动压缩机制冷回路的基础上,增加电磁阀控制制冷剂流向, 通过蒸发冷凝器从周围环境中吸收热量, 通过内部冷凝器向驾驶室释放热量, 使驾驶室温度升高, 满足除霜除雾的法规要求, 为乘员提供舒适的环境。
3.1 实施方案
增加电动压缩机、 电磁阀、 内部冷凝器、 蒸发冷凝器、 单向阀、 电子膨胀阀及优化后管路结构,从而形成封闭的制冷剂循环回路, 其中内部冷凝器替换原车暖风芯体。 热泵制热模式见图10。
3.2 优点
系统效率高, 根据目前的电动压缩机技术, 0 ℃时热泵系统的COP为2.5, -5 ℃时热泵系统的COP为2.0, 因此, 在产生相同热量的前提下, 使用热泵加热方式比使用电加热方式消耗的电能更少, 可增加车辆的续驶里程。
3.3 难点
1) 关键零部件技术不成熟 : 电动压缩机 、 内部冷凝器、 蒸发冷凝器、 制冷管路用电磁阀等核心零部件尚在研发之中。 对于蒸发冷凝器来说, 降低内部压力是提高产品最大换热能力的关键因素; 合理的翅片尺寸可降低蒸发冷凝器结霜的风险。
2) 控制技术不成熟 : 热泵式空调控制技术 ,尤其是车用电动涡旋压缩机的变转速控制算法和电磁阀的控制 (空调模式与热泵模式之间相互转换)算法不成熟。
3) 热泵系统结构复杂 , 零部件数量多 , 机舱布置困难。
4) 成本增加很多, 开发周期长。
5) 随着环境温度降低 , 热泵系统的COP值会有所下降。 当环境温度低于-10 ℃时, 电动压缩机转速需要达到8 000 r/min以上才能维持热平衡。 当电动压缩机转速达到8 000 r/min以上时, 噪声很大,很难达到相关标准的要求, 故此热泵加热方式受温度范围限制较大。