图l中的Ll与L2是两个电感线圈,它们之间没有电的直接联系,但当一个线圈(L1或L2)接上交流电源后,则另一个线圈(L2或L1)两端所接的指示灯就会发亮,这是因为两个线圈之间具有一定的互感M,同时线圈之间存在有磁的耦合。若改变两个线圈的相对位置,则指示灯的亮度也会随之改变,这是因为耦合松紧不同的结果。当指示灯最亮时,即是耦合最紧的位置,也是互感M最大的位置。
1.互感
通过电磁感应现象可知:当穿过线圈的磁通φ发生变动时,线圈中就会感应出电动势。当一个线圈由于其中的电流变动而引起磁通变动时,不仅在本线圈中产生感应电动势,同时在邻近的其他线圈中也可能产生感应电动势。在附图2中两个位置较近的线圈L1和L2,当线圈L1中电流i1变动时,它所产生的磁通φ11也随之而变动,由此在线圈Ll中会有感应电动势或感应电压产生。从图中可以看出,磁通φll的一部分还穿过线圈L2。设这部分磁通为φ21,则当i1变动时,φ2l将随之而变动,这样在线圈2中同样会产生感应电动势或感应电压,说明这两个线圈之间有磁的耦合存在。这种由于邻近线圈中的电流变动而在线圈中产生的感应电动势,就称为互感现象。
同样,如有电流i2通过线圈L2,则电流i2变动时同样会在线圈Ll中产生互感电动势或互感电压。如果有一个线圈中流的是直流,则在另一个线圈中不能感应出互感电压来,也就是说互感对直流不起作用。
实验和推理都证明,线圈Ll对线圈L2的互感和线圈L2对线圈L1的互感是等效的。两线圈之间的互感大小,取决于两个线圈的结构、尺寸、相对位置及介质材料。
线圈中没有铁磁性材料时,互感是线性的,但其值远小于用磁性材料做铁芯的互感量。
2.同名端
仍以图1的互感线圈为例进行分析,图中两个线圈Ll和L2绕在同一圆柱形磁棒上,Ll通入电流il,并假定i是随时间增大的。则i所产生的磁通φl也随时间增大,这时,Ll要产生自感电动势,L2要产生互感电动势(这两个电动势都是由φl变化引起的),它们所推动的感应电流都将产生与φl方向相反的磁通,反对φ1的增加(若i随时间减小,则感应电流产生的磁通与φl方向相同,反对φl的减少)。运用右手螺旋定则,可以确定L1、L2的感应电动势的方向,分别标在图上,见附图3。两线圈的端点l与3、2与4的极性相同。若i是减小的,则Ll、L2中感应电动势的方向都反了过来,但端点1与3、2与4的极性仍然相同,我们把在同一变化磁通作用下,感应电动势极性相同的端子称为“同名端”,感应电动势极性相反的端子称为“异名端”。工程图上常把一组同名端用符号“·”作为标志。互感线圈标上了同名端后,线圈的具体绕法和它们的相对位置就不需要在图上表示出来。
显然,不论i如何变化(增加还是减少),各线圈的同名端始终保持同一极性。这就意味着当电流i从两线圈的同名端同时流入或流出时,两线圈的磁通方向必定一致,这个特点是定义同名端的一个主要方法。